Suite des polynômes de Tchebychev. (Exercice N°127 page 87)

Corrigé

1. a. En utilisant la relation de récurrence avec n = 2, on obtient :

$$f_2(x) = 2x f_1(x) - f_0(x) = 2x \times x - 1 = 2x^2 - 1$$

Puis, pour n = 3:

$$f_3(x) = 2x f_2(x) - f_1(x) = 2x \times (2x^2 - 1) - x = 4x^3 - 3x$$
.

Enfin, pour n = 4:

$$f_4(x) = 2x f_3(x) - f_2(x) = 2x \times (4x^3 - 3x) - (2x^2 - 1) = 8x^4 - 8x^2 + 1$$
.

On a bien:

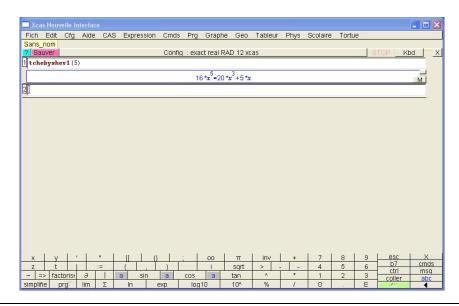
$$f_2(x) = 2x^2 - 1$$

 $f_3(x) = 4x^3 - 3x$
 $f_4(x) = 8x^4 - 8x^2 + 1$

b. On procède comme précédemment avec n = 5:

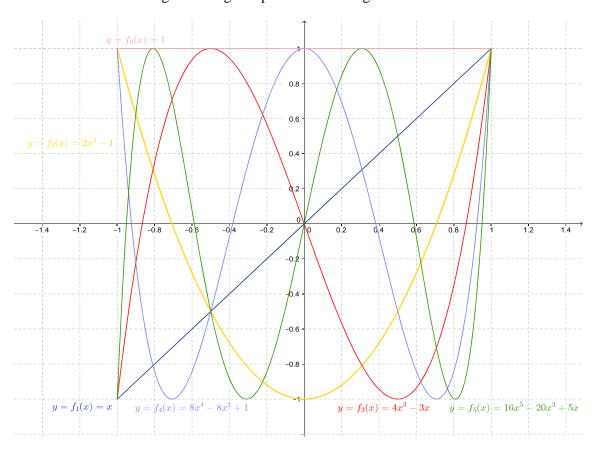
$$f_5(x) = 2x f_4(x) - f_3(x) = 2x(8x^4 - 8x^2 + 1) - (4x^3 - 3x) = 16x^5 - 20x^3 + 5x$$

Avec le logiciel Xcas, on retrouve bien ce résultat :



$$f_5(x) = 16x^5 - 20x^3 + 5x$$

2. On utilise cette fois le logiciel Geogebra pour obtenir la figure suivante :



D'après le graphique ci-dessus, on peut émettre la conjecture suivante :

L'équation $f_n(x) = 0$ admet *n* solutions distinctes sur l'intervalle [-1;1].

3. a. Pour tout entier naturel n, nous posons \mathscr{T}_n : « $f_n(\cos x) = \cos(nx)$ ».

Le raisonnement par récurrence que nous allons mener ci-dessous est appelé « raisonnement par récurrence d'ordre 2 » et nous est « imposé » par la relation de récurrence existant entre f_n , f_{n-1} et f_{n-2} . On doit ici initialiser le raisonnement en validant deux propriétés (ici \mathscr{G}_0 et \mathscr{F}_1) puis, à l'étape de l'hérédité, on supposera deux propriétés, de rangs successifs, vraies (ici \mathscr{F}_N et \mathscr{F}_{N+1}) et on cherchera, classiquement, à montrer que la suivante (\mathscr{F}_{N+2}) l'est également. Dans certaines situations, on pourra mener un raisonnement par récurrence d'ordre 3, 4, etc.

Initialisation

Pour n = 0, on a: $f_0(\cos x) = 1$ et $\cos(0 \times x) = \cos 0 = 1$.

On a bien $f_0(\cos x) = \cos(0 \times x)$.

Ainsi, la propriété \mathscr{G} est vraie.

Pour n=1, on a: $f_1(\cos x) = \cos x$ et $\cos(1 \times x) = \cos x$.

On a bien $f_1(\cos x) = \cos(1 \times x)$.

Ainsi, la propriété \mathscr{I} est vraie.

Hérédité

Soit *N* un entier naturel quelconque fixé.

On suppose les propriétés \mathscr{I}_N et \mathscr{I}_{N+1} vraies (cette forme du raisonnement par récurrence est appelé « raisonnement par récurrence d'ordre 2 »).

On s'intéresse à \mathcal{I}_{N+2} .

On veut montrer $f_{N+2}(\cos x) = \cos[(N+2)x]$.

D'après la relation de récurrence existant entre f_n , f_{n-1} et f_{n-2} on peut écrire :

$$f_{N+2}(\cos x) = 2\cos x \times f_{N+1}(\cos x) - f_N(\cos x)$$
$$= 2\cos x \times \cos[(N+1)x] - \cos(Nx)$$

L'énoncé nous rappelle que l'on a, pour tous réels a et b :

$$2\cos a\cos b = \cos(a+b) + \cos(a-b)$$

(Remarquons que cette égalité s'obtient très facilement à partir de l'égalité $\cos(a+b) = \cos a \cos b - \sin a \sin b$ et de l'égalité $\cos(a-b) = \cos a \cos b + \sin a \sin b$ qui découle de la première en remplaçant b par « -b »).

Avec a = x et b = (N+1)x, on obtient, en tenant compte de la parité de la fonction cosinus :

$$2\cos x \times \cos\left[\left(N+1\right)x\right] = \cos\left[x+\left(N+1\right)x\right] + \cos\left[x-\left(N+1\right)x\right]$$
$$= \cos\left[\left(N+2\right)x\right] + \cos\left(-Nx\right)$$
$$= \cos\left[\left(N+2\right)x\right] + \cos\left(Nx\right)$$

Finalement:

$$f_{N+2}(\cos x) = 2\cos x \times \cos[(N+1)x] - \cos(Nx)$$
$$= \cos[(N+2)x] + \cos(Nx) - \cos(Nx)$$
$$= \cos[(N+2)x]$$

Ainsi, la propriété \mathscr{I}_{N+2} est vraie.

Conclusion

La propriété \mathscr{I}_n est vraie pour tout entier naturel n:

$$\forall n \in \mathbb{N}, f_n(\cos x) = \cos(nx)$$

b. On cherche ici à résoudre $f_n(x) = 0$.

Comme on travaille sur l'intervalle [-1;1], on peut effectuer un changement de variable : pour tout réel x compris entre -1 et 1, il existe un unique réel t compris entre 0 et π tel que $x = \cos t$ (ceci découle directement du théorème de la bijection appliqué à la fonction cosinus sur l'intervalle $[0;\pi]$). On a alors :

$$f_n(x) = 0 \Leftrightarrow f_n(\cos t) = 0 \Leftrightarrow \cos(nt) = 0$$

Evidemment, pour n = 0, on a, pour tout réel t de l'intervalle $[0; \pi]$, $\cos(nt) = \cos(0 \times t) = \cos(0) = 1$. Ainsi, l'équation $\cos(nt) = 0$ n'admet, dans ce cas, aucune solution.

Nous supposons donc, désormais : $n \neq 0$.

Dans \mathbb{R} , on a:

$$\cos(nt) = 0 \Leftrightarrow nt = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Leftrightarrow nt = \frac{k+1}{2}\pi, k \in \mathbb{Z} \Leftrightarrow t = \frac{2k+1}{2n}\pi, k \in \mathbb{Z}$$

Pour obtenir des solutions dans l'intervalle $[0;\pi]$, on ne retient que les valeurs de k telles que : $0 \le \frac{2k+1}{2n} \pi \le \pi$.

On a alors, en tenant compte du fait que k est un entier :

$$0 \le \frac{2k+1}{2n}\pi \le \pi \Leftrightarrow 0 \le (2k+1)\pi \le 2n\pi \Leftrightarrow 0 \le 2k+1 \le 2n \Leftrightarrow -\frac{1}{2} \le k \le n-\frac{1}{2} \Leftrightarrow 0 \le k \le n-1$$

Les valeurs possibles de k sont donc : 0, 1, ... n-2 et n-1 et il y en a exactement n.

Ainsi, dans l'intervalle $[0; \pi]$, l'équation $\cos(nt) = 0$ admet pour solutions les réels $\frac{2k+1}{2n}\pi$ avec k entier naturel dans [0; n-1].

Pour chaque valeur de t ainsi obtenue, on obtient une solution de l'équation $f_n(x) = 0$ en posant $x = \cos t$.

Finalement l'ensemble des solutions de l'équation $f_n(x) = 0$ est :

$$\mathcal{S}_n = \left\{ \cos\left(\frac{2k+1}{2n}\pi\right), k \in \llbracket 0; n-1 \rrbracket \right\}$$

Par exemple, pour n = 5, les 5 solutions de l'équation $f_5(x) = 0$ sont : $\cos \frac{\pi}{10}$,

$$\cos \frac{3\pi}{10}$$
, $\cos \frac{5\pi}{10}$, $\cos \frac{7\pi}{10}$ et $\cos \frac{9\pi}{10}$.

Pour toute valeur de l'entier naturel n, l'équation $f_n(x) = 0$ admet exactement n solutions dans l'intervalle $[0; \pi]$:

$$f_n(x) = 0 \Leftrightarrow x = \frac{2k+1}{2n}\pi, k \in \llbracket 0; n-1 \rrbracket$$

Bien que les polynômes de Tchebychev conduisent à des mathématiques dépassant nettement le programme de la classe de Terminale S, je ne résiste pas au plaisir d'apporter quelques compléments à ce qui précède :

- Les polynômes de Tchebychev de $1^{\text{ère}}$ espèce sont classiquement notés T_n et non f_n (mais ce n'est pas très grave ! \odot).
- Si l'on évoque les polynômes de Tchebychev de $1^{\text{ère}}$ espèce, c'est parce qu'il existe des polynômes de Tchebychev de $2^{\text{ème}}$ espèce! Ces derniers, classiquement notés U_n sont définis sur l'intervalle [-1;1] de la façon suivante:

$$\begin{cases} U_0(x) = 1, U_1(x) = 2x \\ \forall n \in \mathbb{N}, U_{n+2}(x) = 2xU_{n+1}(x) + U_n(x) \end{cases}$$

Ainsi, on notera que la relation de récurrence est commune aux deux familles. Mais le fait d'avoir $T_1 \neq U_1$ change beaucoup de choses!

• On peut donner une définition explicite de T_n :

$$T_n(x) = \frac{n}{2} \sum_{k=0}^{E\left(\frac{n}{2}\right)} (-1)^k \frac{(n-k-1)!}{k!(n-2k)!} (2x)^{n-2k}$$

On retrouve le fait que T_n est de degré n et ne comporte que des monômes de degrés de même parité que celle de n.

• Pour finir, une belle relation, valable pour tous entiers naturels n et m:

$$T_n \lceil T_m(x) \rceil = T_m \lceil T_n(x) \rceil = T_{mn}(x)$$