France Métropolitaine – Série ES – Juin 2004 – Exercice

La subvention accordée par une entreprise à son club sportif était de 3 000 €pour l'année 1998.

Depuis 1998, l'évolution de la subvention en pourcentage d'une année à l'autre est celle décrite dans le tableau ci-dessous :

Année	1999	2000	2001	2002	2003
Evolution en pourcentage	+17%	+15%	+10%	+9%	+6%

Par exemple, le taux d'évolution de la subvention de 2000 à 2001 est de 10%.

- 1. a. Calculer, pour chacune des années, le montant de la subvention attribuée (en euros).
 - Les résultats seront arrondis à l'unité. [1pt]
 - b. Le responsable sportif se plaint d'une diminution continuelle des subventions depuis l'année 1999. Quelle confusion fait-il ? [0,5pt]
- 2. On admet que le montant de la subvention en 2003 est de 5 130 €
 - a. Calculer le pourcentage de diminution ou d'augmentation de la subvention de 1998 à 2003. [1pt]
 - b. Si le taux d'évolution de la subvention d'une année à l'autre était fixe et égal à *t*%, quelle serait la valeur de *t* arrondie à 10^{-3} près qui donnerait la même augmentation de la subvention entre 1998 et 2003 ? [1,5pt]
 - c. Avec ce même taux d'évolution *t*, quelle serait la subvention, arrondie à l'unité, en 2004 ? **[1pt]**

Analyse

Le début de l'exercice propose des calculs classiques de pourcentages. La question 2.b. en revanche requiert de maîtriser la notion de pourcentage (annuel) moyen.

Résolution

\rightarrow Question 1.a.

On peut mener les calculs en ayant recours au formalisme des suites.

Soit s_n la subvention, en euros, accordée l'année 1998 + n.

On a alors, en tenant compte de l'énoncé : $s_0 = 3\,000$.

En utilisant le tableau et en arrondissant les résultats à l'unité, il vient alors :

$$s_{1} = \left(1 + \frac{17}{100}\right) s_{0} = 1,17 \times 3 \ 000 = \boxed{3510}$$

$$s_{2} = \left(1 + \frac{15}{100}\right) s_{1} = 1,15 \times 3 \ 510 \simeq \boxed{4037}$$

$$s_{3} = \left(1 + \frac{10}{100}\right) s_{2} = 1,1 \times 4 \ 037 \simeq \boxed{4441}$$

$$s_{4} = \left(1 + \frac{9}{100}\right) s_{3} = 1,09 \times 4 \ 441 \simeq \boxed{4841}$$

$$s_{5} = \left(1 + \frac{6}{100}\right) s_{4} = 1,06 \times 4 \ 841 \simeq \boxed{5131}$$

On peut alors regrouper ses résultats en complétant le tableau fourni dans l'énoncé :

Année	1999	2000	2001	2002	2003
Evolution en pourcentage	+17%	+15%	+10%	+9%	+6%
Montant (en €)	3 510	4 037	4 441	4 841	5 131

\rightarrow Question 1.b.

Les pourcentages d'augmentation annuelle de la subvention étant positifs, celle-ci ne cesse de croître, contrairement à ce qu'estime le responsable sportif.

En revanche, ces mêmes pourcentages, eux, diminuent.

Le responsable sportif confond l'évolution de la valeur de la subvention avec celle de son pourcentage d'augmentation annuelle.

\rightarrow Question 2.a.

En 1998, le montant de la subvention était de 3 000 € On admet qu'il est de 5 130 €en 2003.

Le montant de la subvention ayant augmenté, le pourcentage cherché est un pourcentage d'augmentation.

Il est donné par :

$$\frac{5130 - 3000}{3000} \times 100 = \frac{2130}{3000} \times 100 = \frac{213}{3} = 71$$

Le montant de la subvention augment de 71% entre 1998 et 2003.

\rightarrow Question 2.b.

Supposons donc que le pourcentage d'augmentation annuelle de la subvention soit constant et égal à t.

Entre 1998 et 2003 ont lieu cinq augmentations successives.

On a donc l'égalité:

$$5130 = \left(1 + \frac{t}{100}\right)^5 \times 3000$$

Il vient alors:

$$1 + \frac{t}{100} = \left(\frac{5130}{3000}\right)^{\frac{1}{5}} = \left(\frac{171}{100}\right)^{\frac{1}{5}} = 1,71^{\frac{1}{5}}$$

D'où:

$$t = 100 \times \left(1, 71^{\frac{1}{5}} - 1\right)$$

A la calculatrice, on obtient : $t \simeq 11,327$ (valeur approchée à 10^{-3} près).

Note : on aurait directement pu mener le calcul précédent en raisonnant sur le pourcentage obtenu à la question précédente en écrivant : $\left(1+\frac{t}{100}\right)^5 = 1,71$. Cette égalité est plus générale dans son esprit et la valeur obtenue ci-dessus s'interprète alors comme suit :

Une augmentation globale sur cinq périodes de 71% correspond à une augmentation moyenne d'environ 11,327% par période.

\rightarrow Question 2.c.

On cherche ici à calculer s_6 .

En considérant toujours que l'on a $s_5 = 5130$, il vient :

$$s_6 = \left(1 + \frac{t}{100}\right) \times s_5 = \left(1 + \frac{11,327}{100}\right) \times 5130 \simeq 5711$$

En considérant une augmentation annuelle de 11,327%, la subvention s'élèverait en 2004 à 5 711 €(valeur arrondie à l'unité).