Synthèse de cours PanaMaths (CPGE) → Sous-espaces stables

Dans ce document, K désigne un corps commutatif.

Généralités sur les sous-espaces stables

Définition

Soit *E* un espace vectoriel sur le corps \mathbb{K} .

Soit F un sous-espace vectoriel de E et f un endomorphisme de E ($f \in \mathcal{L}(E)$).

On dit que F est « stable par f » si on a : $f(F) \subset F$.

La restriction de f à F est alors un endomorphisme de F appelé « endomorphisme induit par f sur F».

Théorème

Soit E un espace vectoriel sur le corps \mathbb{K} . Soit f et g deux endomorphismes de E.

Si f et g commutent alors le noyau et l'image de f (resp. g) sont stables par g (resp. f).

Remarque : tout endomorphisme f de E commutant avec lui-même, on déduit de ce qui précède que son image et son noyau sont stables.

Cas d'un espace vectoriel de dimension finie

Une première caractérisation de la stabilité

Soit E un espace vectoriel sur le corps \mathbb{K} de dimension finie et soit $f \in \mathcal{L}(E)$.

Soit F un sous-espace vectoriel de E de dimension p et soit $\mathcal{B}_F = (e_1, e_2, ..., e_p)$ une base de F.

$$F$$
 est stable par $f \Leftrightarrow \forall i \in \{1, 2, ..., p\}, f(e_i) \in F$

PanaMaths [1-6] Septembre 2012

Notion de base adaptée

Soit E un espace vectoriel sur le corps $\mathbb K$ de dimension finie notée d.

Soit F un sous-espace vectoriel de E de dimension p et soit $\mathcal{B}_F = (e_1, e_2, ..., e_p)$ une base de F.

Soit alors $\mathcal{B} = (e_1, e_2, ..., e_p, e_{p+1}, ..., e_d)$ une base de E.

Une telle base est appelée « base adaptée » à F.

Une deuxième caractérisation de la stabilité

Soit E un espace vectoriel sur le corps \mathbb{K} de dimension finie notée d et soit $f \in \mathcal{L}(E)$. Soit F un sous-espace vectoriel de E de dimension p et $\mathcal{B} = (e_1, e_2, ..., e_d)$ une base de E adaptée à F.

Le sous-espace F est stable par f si, et seulement si, la matrice $M_{\mathscr{B}}(f)$ de f dans la base \mathscr{B} est de la forme : $M_{\mathscr{B}}(f) = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ avec :

- A matrice carrée d'ordre p (c'est la matrice de la restriction de f à F dans la base $\mathcal{B}_F = F\left(e_1,\ e_2,\ ...,\ e_p\right)$);
- *B* matrice de dimension $p \times (n-p)$;
- 0 matrice nulle de dimension $(n-p) \times p$;
- C matrice carrée d'ordre n-p.

On a alors: $\det M_{\mathscr{B}}(f) = \det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det (A) \times \det (C)$.

On peut généraliser le théorème précédent lorsque *E* est somme directe de sous-espaces.

Soit E un espace vectoriel sur le corps \mathbb{K} de dimension finie notée d et soit $f \in \mathcal{L}(E)$. Soit $E_1, E_2, ..., E_p$, p sous-espaces vectoriels de E de dimensions respectives d_i tels que :

$$E = \bigoplus_{i=1}^{p} E_i$$

Soit $\mathcal{B} = (e_{11}, e_{12}, ..., e_{1d_1}, e_{21}, e_{22}, ..., e_{2d_2}, ..., e_{p1}, e_{p2}, ..., e_{pd_p})$ une base de E adaptée à la somme directe.

Les sous-espaces E_i sont stables par f si, et seulement si, il existe p matrices carrées A_i de dimensions respectives d_i telles que la matrice $M_{\mathscr{B}}(f)$ de f dans la base \mathscr{B} soit de la forme :

$$M_{\mathcal{B}}(f) = \begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_p \end{pmatrix}$$

 A_i est alors la matrice de la restriction de f au sous-espace E_i .

On a alors:
$$\det M_{\mathscr{B}}(f) = \det \begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_p \end{pmatrix} = \det A_1 \times \det A_2 \times \dots \times A_p = \prod_{i=1}^p \det A_i$$
.

Notion de polynôme d'endomorphisme

Définitions

Soit E un espace vectoriel sur le corps \mathbb{K} et soit $f \in \mathcal{L}(E)$.

On définit les puissances d'exposant entier de l'endomorphisme f par récurrence :

$$f^0 = Id_E$$
 et $\forall n \in \mathbb{N}^*, f^n = f \circ f^{n-1}$

Soit $P \in \mathbb{K}[X]$ de degré n.

On peut écrire : $P(X) = a_n X^n + a_{n-1} X^{n-1} + ... + a_1 X + a_0 = \sum_{i=0}^n a_i X^i$.

On définit alors P(f) par :

$$P(f) = a_n f^n + a_{n-1} f^{n-1} + ... + a_1 f + a_0 = \sum_{i=0}^n a_i f^i$$

C'est encore un endomorphisme de E.

Un morphisme d'algèbre

Théorème

La notion précédente conduit à considérer pour un endomorphisme f de E donné l'ensemble des polynômes P(f). En notant $\mathbb{K}[f]$ cet ensemble, on a donc :

$$\mathbb{K}[f] = \{P(f)/P \in \mathbb{K}[X]\}$$

On considère alors l'application :

$$\Phi_f: \begin{cases} \mathbb{K}[X] \to \mathcal{L}(E) \\ P \mapsto \Phi_f(P) = P(f) \end{cases}$$

On a l'important théorème suivant :

L'application Φ_f est un morphisme d'algèbres

Son image $\operatorname{Im} \Phi_f = \Phi_f(\mathbb{K}[X]) = \mathbb{K}[f]$ est une sous-algèbre commutative de $\mathcal{L}(E)$ appelée « sous-algèbre engendrée par f ».

Remarque : pour tout polynôme P dans $\mathbb{K}[X]$, les endomorphismes f et P(f) commutent. On en déduit que les sous-espaces vectoriels $\ker P(f)$ et $\operatorname{Im} P(f)$ sont stables par f.

Notion de polynôme minimal

Définitions

Nous nous intéressons maintenant au noyau de Φ_f .

Le noyau de Φ_f est l'ensemble des polynômes P tels que $P(f) = 0_{\mathscr{L}(E)}$. Ces polynômes sont appelés « polynômes annulateurs de f ».

 Φ_f est un morphisme d'anneau et son noyau est donc un idéal de $\mathbb{K}[X]$. Tout idéal de $\mathbb{K}[X]$ étant principal, $\ker \Phi_f$ est principal.

Si le noyau de Φ_f n'est pas réduit au polynôme nul ($\ker \Phi_f \neq \left\{0_{\mathbb{K}[X]}\right\}$) alors il existe un polynôme unitaire engendrant $\ker \Phi_f$. Ce polynôme, classiquement noté Π_f , est appelé « polynôme minimal de l'endomorphisme f ».

Il découle immédiatement de la dernière définition que le polynôme minimal Π_f divise tout polynôme annulateur de l'endomorphisme f.

Théorème

Soit E un espace vectoriel sur le corps \mathbb{K} de dimension finie et soit $f \in \mathcal{L}(E)$.

f admet un polynôme minimal $\Leftrightarrow \dim \mathbb{K}[f] < \infty$.

 $\mathrm{Si} \ \dim \mathbb{K} \big[f \big] = n \ \mathrm{alors} \ \mathrm{d}^{\mathrm{o}} \Pi_f = n \ \mathrm{et} \ \Big\{ \mathrm{Id}_{\scriptscriptstyle{E}}, f, f^{\, 2}, ..., f^{\, n-1} \Big\} \ \mathrm{est} \ \mathrm{une} \ \mathrm{base} \ \mathrm{de} \ \mathbb{K} \big[f \big].$

Le cas de la dimension finie

Tout endomorphisme d'un espace vectoriel de dimension finie admet un polynôme minimal.

Théorème de décomposition des noyaux

Lemme

Soit E un espace vectoriel sur le corps \mathbb{K} et soit $f \in \mathcal{L}(E)$.

Soit A et B deux polynômes dans $\mathbb{K}[X]$ et D = PGCD(A, B).

On a:

$$\ker A(f) \cap \ker B(f) = \ker D(f)$$

Théorème

Soit E un espace vectoriel sur le corps \mathbb{K} et soit $f \in \mathcal{L}(E)$.

Soit A et B deux polynômes dans $\mathbb{K}[X]$ premiers entre eux.

On a:

$$\ker AB(f) = \ker A(f) \oplus \ker B(f)$$

Le résultat précédent se généralise :

Soit E un espace vectoriel sur le corps \mathbb{K} et soit $f \in \mathcal{L}(E)$.

Soit A_1, A_2, \dots, A_n n polynômes dans $\mathbb{K}[X]$ deux à deux premiers entre eux.

On a:

$$\ker\left(\prod_{i=1}^{n} A_{i}\right)(f) = \ker\left(A_{1} \dots A_{n}\right)(f) = \ker A_{1}(f) \oplus \dots \oplus \ker A_{n}(f) = \bigoplus_{i=1}^{n} \ker A_{i}(f)$$