Synthèse de cours (Terminale ES) → La fonction logarithme népérien

Définition et premières propriétés

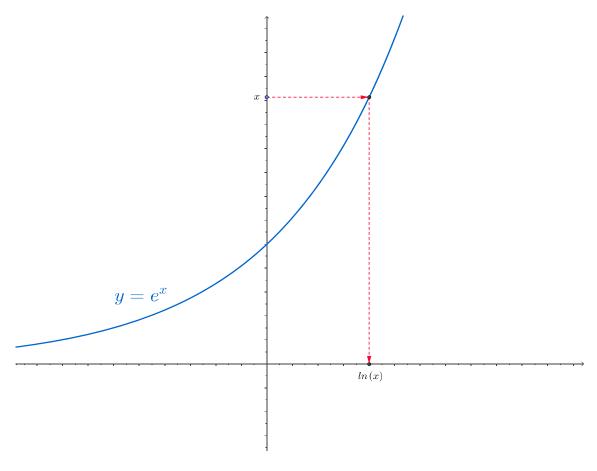
Définition

Pour tout réel x strictement positif, il existe un unique réel y tel que $e^y = x$ (voir la figure ci-dessous). Ce réel est appelé <u>logarithme népérien</u> de x et on le note : $\ln x$ ou $\ln(x)$. On a donc, pour tout réel x strictement positif :

$$e^{\ln x} = x$$

« $\ln x$ » est donc le réel dont l'exponentielle est égale à x.

On dit que la fonction logarithme népérien est la « fonction réciproque » de la fonction exponentielle.



Définition de la fonction logarithme népérien comme fonction réciproque de la fonction exponentielle.

Premières propriétés (directement liées à la définition)

- $\ln 1 = 0$;
- $\forall x \in \mathbb{R}, \ln e^x = x$;
- La fonction ln est strictement croissante sur $]0,+\infty[$. Il en découle :
 - $\circ \quad \forall x \in]0,1[,\ln x < 0;$
 - $\circ \quad \forall x \in]1, +\infty[, \ln x > 0 ;$

 - $\circ \quad \forall (x, y) \in (]0, +\infty[)^2, \ln x > \ln y \Leftrightarrow x > y ;$
 - $\circ \quad \forall (x, y) \in (]0, +\infty[)^2, \ln x < \ln y \Leftrightarrow x < y$

Propriétés algébriques

Propriété fondamentale : logarithme népérien d'un produit

$$\forall (x, y) \in (]0, +\infty[)^2, \ln(xy) = \ln x + \ln y$$

Conséquences de la propriété fondamentale

- $\forall y \in]0, +\infty[, \ln\left(\frac{1}{y}\right)] = -\ln y$;
- $\forall (x, y) \in (]0, +\infty[)^2, \ln\left(\frac{x}{y}\right) = \ln x \ln y$;
- Généralisations de la propriété fondamentale :
 - $\circ \quad \forall n \in \mathbb{N}^*, \forall (x_1, x_2, ..., x_n) \in (]0, +\infty[]^n, \ln(x_1 x_2 ... x_n) = \ln x_1 + \ln x_2 + ... + \ln x_n$
 - $\circ \quad \forall p \in \mathbb{Z}, \forall x \in \left] 0, +\infty \right[, \ln \left(x^p \right) = p \ln x$
 - $\circ \quad \forall q \in \mathbb{Q}, \forall x \in \left]0, +\infty\right[, \ln\left(x^q\right) = q \ln x$
- $\forall x \in]0, +\infty[$, $\ln \sqrt{x} = \frac{1}{2} \ln x$.

Etude de la fonction logarithme népérien

Ensemble de définition

$$D_{\ln} = \left]0, +\infty\right[$$

Continuité

La fonction logarithme népérien est continue sur son ensemble de définition.

Dérivabilité et dérivée

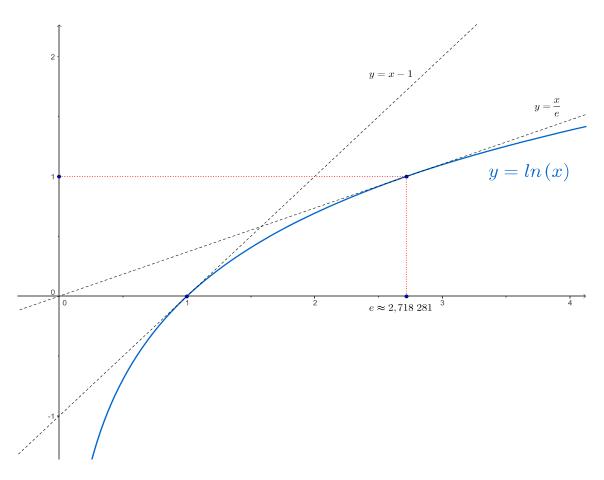
La fonction logarithme népérien est dérivable sur son ensemble de définition et sa fonction dérivée est la fonction inverse :

$$\forall x \in \mathbb{R}_{+}^{*}, (\ln)'(x) = \frac{1}{x}$$

Tableau de variation

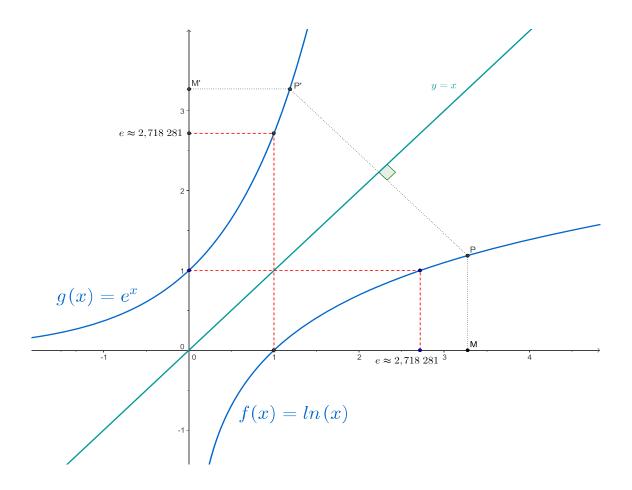
х	0 1 +∞
$\ln'(x) = \frac{1}{x}$	
ln	_∞ 0 →+∞

Courbe représentative



Courbe représentative de la fonction logarithme népérien et des tangentes aux points d'abscisses 1 et e.

Interprétation graphique de la réciprocité des fonctions logarithme népérien et exponentielle



Dans un repère orthonormal, les courbes représentatives des fonctions logarithme népérien et exponentielle sont symétriques par rapport à la droite d'équation y = x ($1^{\text{ère}}$ bissectrice).

Composée du logarithme népérien et d'une fonction strictement positive (hors programme)

 $D\acute{e}riv\acute{e}e\ de\ \ln(f) = \ln o f$

On considère un intervalle *I* et une fonction *f* dérivable sur *I* et telle que : $\forall x \in I, f(x) > 0$.

On a alors:
$$(\ln of)'(x) = \frac{f'(x)}{f(x)}$$
:

$$\left(\ln o f\right)' = \frac{f'}{f}$$

Primitive de
$$\frac{f'}{f}$$

On considère un intervalle I et une fonction f dérivable sur I et ne s'annulant pas sur I. On a alors :

$$\ln \left| f \right|$$
 est une primitive de $\frac{f'}{f}$ sur I

Complément : le logarithme décimal

Définition

La fonction $\log : x \mapsto \frac{\ln x}{\ln 10}$ définie sur $]0; +\infty[$ est appelée « fonction logarithme décimal ».

Pour tout réel x, le nombre $\frac{\ln x}{\ln 10} = \log x$ est appelé « logarithme décimal de x ».

En particulier : $\forall n \in \mathbb{Z}, \log 10^n = n$.

Propriétés

La fonction logarithme décimal étant le produit de la fonction logarithme népérien par une constante strictement positive $(\frac{1}{\ln 10})$, on retrouve les principales propriétés du logarithme népérien (croissance stricte et conséquences, propriétés algébriques, ...).