Synthèse de cours PanaMaths (Terminale S) → La fonction exponentielle de base a

Dans tout ce document, « a » désigne un réel strictement positif.

Définition et propriétés

Définition

La fonction « exponentielle de base a », notée « \exp_a », est la fonction définie sur \mathbb{R} par :

$$\exp_a(x) = \exp(x.\ln a) = e^{x.\ln a}$$

Pour tout réel x, on écrit : $e^{x.\ln a} = a^x$ (on lit « exponentielle de base a de x » ou, plus couramment : « a exposant x »).

Remarques:

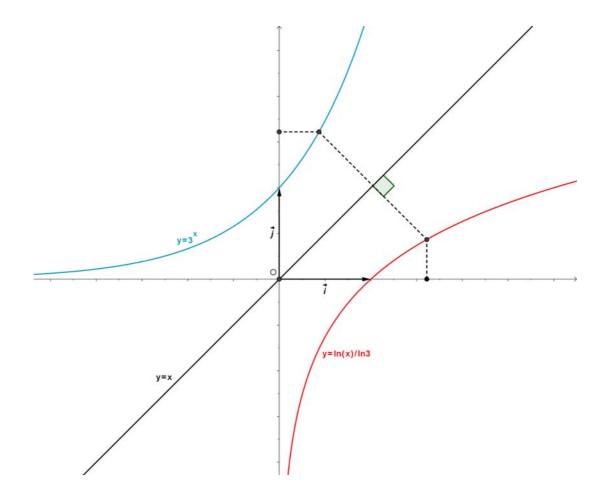
- La fonction exponentielle est la fonction exponentielle de base e;
- La fonction exponentielle de base 1 est la fonction constante prenant la valeur 1;
- Pour a fixé différent de 1, les fonctions logarithme de base a (pour rappel, il s'agit de la fonction définie sur \mathbb{R}_+^* par : $x \mapsto \frac{\ln x}{\ln a}$) et exponentielle de base a sont réciproques l'une de l'autre :

$$\forall x \in \mathbb{R}_{+}^{*}, \ \exp_{a}(\log_{a}(x)) = x \ \text{et} \ \forall x \in \mathbb{R}, \ \log_{a}(\exp_{a}(x)) = x$$

Ainsi, dans un repère orthonormal, les courbes représentatives de ces fonctions sont symétriques par rapport à la droite d'équation y = x (1^{ère} bissectrice). Voir la figure page suivante.

Propriétés découlant de la définition

- $a^0 = 1$ et $a^1 = a$;
- $\forall x \in \mathbb{R}, \ a^x > 0$;
- $\forall x \in \mathbb{R}, \ln(a^x) = x \ln a$



Propriétés algébriques

Elles découlent fondamentalement de celles des fonctions exponentielle et logarithme népérien. Elles s'apparentent formellement à celles des puissances d'exposants entiers.

- $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ a^{x+y} = a^x a^y$; On peut généraliser ce résultat à l'exponentielle de base a d'une somme de n réels : $a^{x_1 + x_2 + \ldots + x_n} = a^{x_1} a^{x_2} \ldots a^{x_n}$
- $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ \left(a^x\right)^y = a^{xy}$;
- $\bullet \quad \forall x \in \mathbb{R}, \ a^{-x} = \frac{1}{a^x} \ ;$
- $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ \frac{a^x}{a^y} = a^{x-y}.$

On considère un deuxième réel b strictement positif :

- $\forall x \in \mathbb{R}, (ab)^x = a^x b^x$;
- $\forall x \in \mathbb{R}, \ \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}.$

Etude de la fonction exponentielle de base a

Dans cette partie, nous supposons : $a \ne 1$.

Ensemble de définition

$$D_{\exp_a} = \mathbb{R}$$

Dérivée

La fonction exponentielle de base a est dérivable sur $\mathbb R$ et on a :

$$\forall x \in \mathbb{R}, \ (\exp_a)'(x) = \ln a \times \exp_a(x)$$

Sens de variation

- Si a > 1, la fonction exponentielle de base a est strictement décroissante sur \mathbb{R} ;
- Si 0 < a < 1, la fonction exponentielle de base a est strictement croissante sur \mathbb{R} .

Limites aux bornes de l'ensemble de définition

• Si a > 1:

$$\lim_{x \to -\infty} \exp_a(x) = \lim_{x \to -\infty} a^x = 0 \text{ et } \lim_{x \to +\infty} \exp_a(x) = \lim_{x \to +\infty} a^x = +\infty$$

• Si 0 < a < 1:

$$\lim_{x \to -\infty} \exp_a(x) = \lim_{x \to -\infty} a^x = +\infty \text{ et } \lim_{x \to +\infty} \exp_a(x) = \lim_{x \to +\infty} a^x = 0$$

Quelques courbes représentatives

Nous avons représenté ci-dessous quelques courbes représentatives de fonctions exponentielles pour diverses valeurs de a.

