Synthèse de cours (Terminale S)

→ Conditionnement et indépendance

Probabilité conditionnelle

Définition

Soit A et B deux événements d'un univers Ω . On suppose $p(B) \neq 0$.

On définit la probabilité de l'événement « A sachant B » notée p(A|B) ou $p_B(A)$ par :

$$p(A|B) = p_B(A) = \frac{p(A \cap B)}{p(B)}$$

Note : on dit également que « l'événement A est conditionné par l'événement B ».

Remarque: $p(A \cap B) = p(A \mid B) p(B) = p(B \mid A) p(A)$.

Evénements indépendants

Définition

Soit A et B deux événements d'un univers Ω .

On dira que « A et B sont des événements indépendants » si la réalisation de A ne dépend pas de celle de B (ou, ce qui est équivalent, si la réalisation de B ne dépend pas de celle de A).

Si $p(B) \neq 0$, cette définition équivaut à écrire :

$$p(A | B) = p(A)$$

(ou, si $p(A) \neq 0 : p(B|A) = p(B)$)

Caractérisation

A et B indépendants équivaut à
$$p(A \cap B) = p(A) p(B)$$

- L'événement certain (Ω) , d'une part, et l'événement impossible (\emptyset) , d'autre part, sont indépendants de tout autre événement de Ω ;
- Si A et B sont indépendants, alors A et \overline{B} , d'une part, \overline{A} et B, d'autre part, et \overline{A} et \overline{B} , enfin, sont indépendants.

Variables aléatoires indépendantes

Définition

Soit X et Y deux variables aléatoires prenant leurs valeurs dans les ensembles $\{x_1, x_2, ..., x_n\}$ et $\{y_1, y_2, ..., y_m\}$ respectivement.

On dira que « les variables aléatoires X et Y sont indépendantes » si, pour tout indice i de $\{1, 2, ..., n\}$ et tout indice j de $\{1, 2, ..., m\}$ les événements « $X = x_i$ » et « $Y = y_j$ » sont indépendants.

Formule des probabilités totales

Partition d'un ensemble

Définition

Soit un univers Ω et soit $\{B_1, B_2, ..., B_n\}$ un ensemble de n parties (événements) non vides de Ω . On dira que les B_i forment une « partition » de Ω si :

- Les B_i sont deux à deux disjoints : $\forall (i, j) \in \{1, 2, ..., n\}^2, i \neq j \Rightarrow B_i \cap B_j = \emptyset$;
- La réunion des B_i est égale à l'univers : $B_1 \cup B_2 \cup ... \cup B_n = \bigcup_{i=1}^n B_i = \Omega$.

Exemple fondamental

Dans un univers Ω , une partie A non vide et différente de Ω et son complémentaire \overline{A} (soit, en termes d'événement, l'événement A et son contraire) forment une partition de Ω puisque l'on a : $\overline{A} \neq \emptyset$, $A \cap \overline{A} = \emptyset$ et $A \cup \overline{A} = \Omega$.

Formule des probabilisés totales

Soit A un événement d'un univers Ω et soit $\{B_1, B_2, ..., B_n\}$ une partition de cet univers.

On a:

$$p(A) = p(A \cap B_1) + p(A \cap B_2) + ... + p(A \cap B_n)$$

$$= \sum_{i=1}^{n} p(A \cap B_i)$$

$$= p(A | B_1) p(B_1) + p(A | B_2) p(B_2) + ... + p(A | B_n) p(B_n)$$

$$= \sum_{i=1}^{n} p(A | B_i) p(B_i)$$

Cette formule est appelée « formule des probabilités totales ».